
Influence of Si doping on optical properties of wurtzite GaN

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2001 J. Phys.: Condens. Matter 13 8891

(http://iopscience.iop.org/0953-8984/13/40/303)

Download details:

IP Address: 171.66.16.226

The article was downloaded on 16/05/2010 at 14:55

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/13/40
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 13 (2001) 8891–8899 PII: S0953-8984(01)24495-6

Influence of Si doping on optical properties of wurtzite
GaN

A Ferreira da Silva1, C Moysés Araújo1, Bo E Sernelius2, C Persson3,
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Abstract
The band gap shift (BGS) of Si-doped wurtzite GaN for impurity concentrations
spanning the insulating to the metallic regimes has been investigated at low
temperature. The critical impurity concentration for the metal–non-metal
transition is estimated from the generalized Drude approach for the resistivity
to be about 1.0 × 1018 cm−3. The calculations for the BGS were carried out
within a framework of the random phase approximation, taking into account
the electron–electron, electron–optical phonon, and electron–ion interactions.
In the wake of very recent photoluminescence measurements, we have shown
and discussed the possible transitions involved in the experimental results.

1. Introduction

GaN-based wide band gap semiconductors have drawn much current intensive research, mostly
because of their potential applications for optical devices such as blue-green light emitting
diodes and high-temperature electronics [1–14]. Despite its technological importance, there
has so far been no reported detailed investigation of the band gap shift (BGS) of this material in
the presence of high doping. The role of impurities is very important in fabricating devices. The
efficiency of these devices is strongly affected by the incorporation of impurities. Experiments
on doped semiconductors, above the impurity critical concentration Nc for the metal–non-
metal (MNM) transition, reveal a BGS greater than 10% of the band gap of the pure material
[14–16]. The value Nc is estimated here from the generalized Drude approach (GDA) for the
resistivity.

At high doping levels the donor electrons are collected at the bottom of the conduction
band. There are two quantities related to the band gap that are of interest. The energy
distance between the Fermi level and the valence-band top, EG,1, and the distance between
the conduction and valence-band extrema, EG,2. The latter energy is called the reduced
band gap energy, which can be determined from optical emission measurements such as
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photoluminescence, whereas the former energy is called the optical band gap energy. The first
is equal to the reduced band plus the band gap filling. The second is equal to the band gap in the
absence of doping,EG,0, plus the self-energy shifts of the states at the band extrema. In the wake
of very recent photoluminescence spectroscopy which measured the BGS of wurtzite Si-doped
GaN at low temperature, 2 K [14], we have compared the energies obtained experimentally
with those calculated from three methods based on the random-phase approximation (RPA)
[15–19] and discussed the possible transitions involved.

In a model expounded by Berggren and Sernelius [17] and simplified by Jain et al [18]
and Lindefelt [19] the BGS has also been investigated.

2. Electrical resistivity and MNM transition

The generalized Drude approach was applied to polar semiconductors by Sernelius and Morling
[20]. The results were based on the dynamical conductivity derived by Sernelius [21]. The
static resistivity in a polar semiconductor is the same as for a non-polar semiconductor for
which the expressions are simpler. Since here we are only interested in the static results we
use the expressions for a non-polar semiconductor as a starting point.

For non-polar semiconductors the generalized Drude approach for the resistivity is reduced
to [22]

ρ(ω) = −im∗ω
ne2

+
i2

3πnω

∫ ∞

0
q2

[
1

εT (q, ω)
− 1

εT (q, 0)

]
dq (1)

where e is the electric charge, m∗ is the effective mass and εT is the total dielectric function and
n is the ionized impurity concentration. We have assumed a random distribution of Coulomb
impurities. The total dielectric function is given by [21, 22]

εT (q, ω) = ε + α1(q, ω) + iα2(q, ω) (2)

where ε is the dielectric constant of GaN, and α1 and α2 are the real and imaginary parts of the
polarizabilities of doping carriers. These functions are temperature dependent. The imaginary
part α2 can be obtained analytically in the RPA [21, 22], The real part α2 can be obtained from
the imaginary part through the Kramers–Kroning dispersion relation.

We are interested in the static resistivity, which can now be written as [22]

ρ(0) = 4π

EF

∫ ∞

0
Q2 [∂α2(Q,W)/∂W ]|W=0

[ε + α1(Q, 0)]2
dQ. (3)

This can be reduced to [22]

ρ(0) = 2(m∗e)2

3πnh̄3

∫ ∞

0

{1 − tanh[0.5B(Q2 − M)]}
Q[ε + α1(Q, 0)]2

dQ (4)

where we have introduced the dimensionless variablesQ = q/2kF ,W = h̄ω/4EF ,B = β/EF

andM = µ/EF , β = 1/kBT , KB is the Boltzmann’s constant, andµ is the chemical potential.
The quantity kF is the Fermi wavevector, given by kF = (3nπ2)1/3, andEF is the Fermi energy.

The chemical potential µ is obtained from the implicit expression [22]

B3/2 =
∫ U

0

3y

1 − y2
{A ln[(1 − y2)/y2]} dy (5)

where U = (1 + e−A)−1/2 and A = BM = µB. For a given A, one obtains B leading to a
relation between them.

The calculated resistivities of GaN:Si as a function of impurity concentration and
temperature obtained using the procedure described above are presented in figure 1. The
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curves present similar forms, converging to values around 1.0 × 1018 cm−3 for GaN:Si, which
is determined to be the critical concentration Nc for the MNM transition in this system. We
have used the ionization energy EI = 35 meV and the electron effective mass md = 0.20m0.
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Figure 1. Resistivity of GaN:Si as a function of the donor impurity concentration nd calculated by
the generalized Drude approach (GDA) at different temperatures. The temperatures correspond,
from top to bottom, to 4, 12, 50,100, 200 and 300 K.

3. BGS and discussion

The different self-energy shifts presented in the determination of the two band gap energies
were calculated with many-body theory within the zero temperature formalism along the lines
of [15–17, 23–25]. The signs of these self-energy shifts are such that all tend to reduce the
band gap values.

GaN is a single-valley semiconductor. The Fermi volume is spherical. We characterize
the band dispersion with the density-of-states effective mass. Thus we represent the Fermi
volume with a sphere of radius kF .

The single-particle energy for a state (p, σ ) we define as the variational derivative of the
total energy with respect to the occupation number for state (p, σ ), i.e.

εp,σ = δ(NE)

δnp,σ
= ε0

p + h̄'p,σ (6)

where the first term on the right-hand side is the unperturbed single-particle energy (the kinetic
energy) and the second is the self-energy from the interactions. With the variational derivative
we mean, for p < kF , minus the change in total energy when the occupation number for state
(p, σ ) is subtracted from the sum over occupied states; forp > kF , we mean the change in total
energy when the occupation number for state (p, σ ) is added to the sum over occupied states.
In other words we address the whole change in total energy to the energy of the single-particle
state. This is the so-called Rayleigh–Schrödinger perturbation theory.
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The two band gaps are obtained as

EG,1 = EG,0 + ε
0,e
kF

+ h̄'e
kF ,σ

+ h̄'h
0,σ

EG,2 = EG,0 + h̄'e
0,σ + h̄'h

0,σ (7)

where the indices e and h stand for electrons and holes, respectively .
We assume a random distribution of donors and approximate the ionized-donor potentials

with pure Coulomb potentials. With these approximations the interaction energy consists
of exchange, correlation, and electron–impurity, electron–electron interaction parts. The
correlation energy is

Ec = +i
∫ 1

0

dλ

λ

1

2N

∑
q

′
{ ∫ +∞

−∞

dω

2π
h̄

[(
1

ελ(q, ω)
− 1

)
−

(
1

εHF,λ(q, ω)
− 1

)] }
(8)

the exchange energy is

Ex = +i
∫ 1

0

dλ

λ

1

2N

∑
q

′
{ ∫ +∞

−∞

dω

2π
h̄

[(
1

εHF,λ(q, ω)
− 1

)
−

(
1

ελ0 (q, ω)
− 1

)] }
(9)

the total electron–electron interaction part is

Exc = +i
∫ 1

0

dλ

λ

1

2N

∑
q

′
{ ∫ +∞

−∞

dω

2π
h̄

[(
1

ελ(q, ω)
− 1

)
−

(
1

ελ0 (q, ω)
− 1

)] }
(10)

and the electron–impurity interaction part is

Eion = 1

2N

∑
q

′ nνq
κ

(
1

ε(q, 0)
− 1

)
. (11)

Here κ is the background dielectric constant. All these energies are energies per electron. The
coupling constant λ in equations (8)–(10) is the result of the so-called ground-state energy
theorem. A superscript λ indicates that all Coulomb interactions are multiplied by λ. The
dielectric function with the superscript HF is the dielectric function in the Hartree–Fock
approximation. The approximation in equation (10) lies in the choice of dielectric function
in the first term of the integrand. Choosing the Hartree–Fock dielectric function results in
the exchange energy, as can be seen from equation (9). The second terms in Ex and Exc

represent the subtraction of the self-interaction terms and the dielectric function in these terms
is an artificial function introduced to make the physics more transparent and simultaneously
make the integrals converge faster. This dielectric function is the result where the electrons
are distributed over the single-particle states in the usual way, obeying the Pauli principle, but
are allowed to scatter into occupied states. The last energy contribution is the result to second
order in the electron–impurity interaction, where νq is the Coulomb potential. We perform the
calculation in the RPA where

ε(q, ω) = 1 + α0(q, ω) (12)

α0(q, ω) = − 1

h̄κ
νq

∑
σ

′
∫

d3k

(2π)3

∫ ∞

−∞

dε

2π i
G(0)

σ (k, ε)G(0)
σ (k + q, ε + ω) (13)

G(0)
σ (k, ε) = nk,σ

ε − (h̄k2/2m∗) − iη
+

1 − nk,σ

ε − (h̄k2/2m∗) − iη
(14)

nk,σ =
{

1 if k < kF

0 otherwise.
(15)

From these relations we see how the occupation numbers enter the energy expressions.
To get the self-energy shift for the valence-band holes we add a small fraction of holes; these
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Figure 2. Calculated (RPA approximation) and experimental band gap energies for GaN:Si as a
function of ionized impurity concentration. The full curve represents the transition 1 between the
Fermi level EF and the state at the valence band, VB. It corresponds to the optical band gap EG,1.
The dotted curve represents the transition 2 between the bottom of the conduction band, CB, and the
extremum of the VB. It corresponds to the reduced band gap, EG,2. The open squares and circles
are the experimental data [14], which correspond to EG,1 and EG,2 respectively. The parameters
used are EG,0 = 3.52 eV, ε = 9.5, md = 0.20m0, mhh = 0.55m0 and mlh = 0.55m0.

holes give rise to an additional polarizability term in the dielectric function. This term can be
expressed in terms of Green’s functions for the holes in analogy with the above expression and
in that way the occupation numbers for the hole states enter the energy expressions. When
the functional derivatives with respect to hole occupation numbers have been taken the hole
polarizabilities are allowed to go to zero. For more details of the calculation see [15, 17–25]. In
figures 2 and 3 we show the results for different transitions in comparison to the experimental
data [14], represented by empty squares and circles, which are expected to be the optical,
EG,1, and reduced, EG,2, band gap energies, respectively. A reasonable agreement is found
between experiment and theory for these transitions. These two figures represent two different
approximations. In the real system the valence band consists of two bands; one heavy-hole
band; one light-hole band. These bands are degenerate in the 3-point. The bands are coupled
and holes can scatter from one band to the other. This coupling has the effect that the states at
the 3-point are shifted the same amount when the system is doped. Our code does not include
this coupling for hexagonal systems. In one situation, when the masses of the two bands are
equal, the coupling has no effect at all. To get a feeling for how serious this deficiency in the
code is we have made one calculation using the same masses, figure 2, and one using different
masses, figure 3. In figure 2, the valence-band degeneracy is lifted. If the coupling had been
included the degeneracy would have prevailed and the shift of the valence bands at the 3-point
would have been the same as in figure 2.

We now perform the calculation of BGS using Lindefelt’s model [19], which is an extension
of the approach originally developed by Jain et al [18]. The latter is partly based on the
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Figure 3. Calculated (RPA approximation) and experimental band gap energies for GaN:Si as
a function of ionized impurity concentration. The upper full curve represents the transition 1
between EF and the uppermost VB, which is the heavy-hole (hh) band. The upper dashed curve
represents the transition 3 between EF and the lower VB, which is the light-hole (lh) band. Both
cases correspond to EG,1. The lower full curve represents the transition 2, between the bottom of
the CB and the hh band. The lower dashed curve represents the transition 2 between the bottom
of the CB and the lh band. Both cases correspond to EG,2. The open squares and circles are the
experimental data [14], which correspond to EG,1 and EG,2, respectively. The parameters used are
EG,0 = 3.52 eV, ε = 9.5, md = 0.20m0, mhh = 0.60m0 and mlh = 0.51m0.

plasmon-pole approximation and partly on the RPA [17]. Even though the model in Lindefelt
uses several approximations as a constant dielectric function, parabolic energy bands, and a
parabolic approximation of the overlap integrals for cubic materials, with emphasis on the
hole–donor interaction, it fairly accurately describes both the lowest conduction band and the
uppermost valence band, which are not described in Jain et al [18]. Lindefelt’s model is
described as follows.

The reduced band gap is written as [16]

EG,2 = EG,0 − 4EG (16)

where EG,0 is the band gap energy for undoped material and 4EG is the BGS. The
corresponding optical band gap is

EG,1 = EG,2 − 4EBM
G (17)

where 4EBM
G is the Burstein–Moss shift [26, 27]. It is written as and

4EBM
G = h̄2k2

F

2md

(
1 +

md

mh

)
. (18)

In equations (17) and (18), md and mh are the density-of-states effective masses of the majority
and minority carriers, respectively. The shift of the band gap due to doping has contributions
from both the shift of the conduction band, 4Ec, and the shift of the valence band, 4Ev , and
it is written as

4EG = −4Ec + 4Ev. (19)
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Figure 4. Calculated (two different models) and experimental band gap energies for GaN:Si as
a function of ionized impurity concentration. The dashed and the full curves represent EG,1 and
EG,2, respectively, from the Jain et al model [18]. The dotted and dot-dashed curves represent
EG,1 and EG,2, respectively, from the Lindefelt model [19]. The open squares and circles are the
experimental data [14]. The parameters used are the same as for figure 2.

4Ec is a positive quantity and 4Ev is a negative quantity, implying that both contributions
reduce the band gap as follows [19]:

4Ec = h̄

ee∑
c

+h̄
ed∑
c

(20)

4Ev = h̄

he∑
v

+h̄
hd∑
v

. (21)

In equation (20) the first term on the right-hand side is the self-energy for electron–electron
interactions of the conduction band electron gas and the second term is the self-energy of the
interaction between the conduction band electron and the donors ions. In equation (21) the first
term on the right-hand side is the self-energy of a hole in the valence band as it moves through
the electron gas of the conduction band electrons and the second term is the self-energy for
interaction holes with the donors ions. They are written as

h̄

ee∑
c

= −13.6 × 3

(
a0

ε

)(
3

π
n

)1/3

(22)
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h̄

ed∑
c

= −13.6

(
π3

3

a3
0

εmd

)1/2

n (23)

h̄

hd∑
v

= 13.6

(
π3

3

)1/2
m∗

hh + m∗
lh

2ε1/2

(
a0

md

)3/2

n1/2 (24)

h̄

he∑
v

= 13.6

(
4

π3/4

)(
mda

3
0

ε5

)
J (e)n1/4. (25)

In the equations above, a0 is the Bohr radius, k is the dielectric constant of the material, mlh

is the light-hole effective mass, and mhh is the heavy-hole effective mass. The integral J (e) is
defined as [19],

J (e) = 1

2

hh∑
v=lh

Jv(S
e
0) Se

0 = h̄ωp

EF

(26a)

Jv(S
(e)
0 ) =

∫ ∞

0

dS

9(e)(s)

1

9(e)(s) + (md/mv)S2
(26b)

9(e)(S) =
√

1 +
4

3

S

S
(e)
0

+ S2. (26c)

In equation (26a) EF is the Fermi energy and ωp is the plasma frequency of the electron.
We have considered EG,0 = 3.52 eV, the dielectric constant ε = 9.5, mhh = 0.55m0,

mlh = 0.55m0, and md = 0.20.
In figure 4 we show the results of the Lindefelt and Jain et al models.

4. Summary

We have investigated the electrical resistivity, the MNM transition, and the possible optical
transition involved in the experimental measurements for Si-doped wurtzite GaN which lead
to the BGS. The variation of the BGS appears for values above the critical concentration for
the MNM transition, which is estimated when all the resistivity curves merge together to one
critical point. The calculations for the BGS were carried out within a framework of the RPA. In
the light of a very recent photoluminescence measurement, we have investigated and discussed
all the possible transitions involved with a reasonable agreement with them. It is worth pointing
out that a full band structure calculation with all possible transition energies including a very
accurate Burstein–Moss shift is required to explain the experimental results more precisely.
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